A permuted factors approach for the linearization of polynomial matrices

نویسندگان

  • Stavros Vologiannidis
  • Efstathios N. Antoniou
چکیده

In [1] and [2] a new family of companion forms associated to a regular polynomial matrix T (s) has been presented, using products of permutations of n elementary matrices, generalizing similar results presented in [3] where the scalar case was considered. In this paper, extending this “permuted factors” approach, we present a broader family of companion like linearizations, using products of up to n(n− 1)/2 elementary matrices, where n is the degree of the polynomial matrix. Under given conditions, the proposed linearizations can be shown to consist of block elements where the coefficients of the polynomial matrix appear intact. Additionaly we provide a criterion for those linearizations to be block symmetric. We also illustrate several new block symmetric linearizations strictly equivalent to the original polynomial matrix T (s) where in some of them, the constraint of nonsingularity of the constant term and the coefficient of maximum degree is not a prerequisite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Field of Values of Matrix Polynomials

In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied.  Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Robotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices

In this paper, we introduce the 1− K robotic-cell scheduling problem, whose solution can be reduced to solving a TSP on specially structured permuted Monge matrices, we call b-decomposable matrices. We also review a number of other scheduling problems which all reduce to solving TSP-s on permuted Monge matrices. We present the important insight that the TSP on b-decomposable matrices can be sol...

متن کامل

Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization

One of the most frequently used techniques to solve polynomial eigenvalue problems is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • MCSS

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011